7 research outputs found

    Observer weighting of interaural cues in positive and negative envelope slopes of amplitude-modulated waveforms

    Get PDF
    The auditory system can encode interaural delays in highpass-filtered complex sounds by phase locking to their slowly modulating envelopes. Spectrotemporal analysis of interaurally time-delayed highpass waveforms reveals the presence of a concomitant interaural level cue. The current study systematically investigated the contribution of time and concomitant level cues carried by positive and negative envelope slopes of a modified sinusoidally amplitude-modulated (SAM) high-frequency carrier. The waveforms were generated from concatenation of individual modulation cycles whose envelope peaks were extended by the desired interaural delay, allowing independent control of delays in the positive and negative modulation slopes. In experiment 1, thresholds were measured using a 2-interval forced-choice adaptive task for interaural delays in either the positive or negative modulation slopes. In a control condition, thresholds were measured for a standard SAM tone. In experiment 2, decision weights were estimated using a multiple-observation correlational method in a single-interval forced-choice task for interaural delays carried simultaneously by the positive, and independently, negative slopes of the modulation envelope. In experiment 3, decision weights were measured for groups of 3 modulation cycles at the start, middle, and end of the waveform to determine the influence of onset dominance or recency effects. Results were consistent across experiments: thresholds were equal for the positive and negative modulation slopes. Decision weights were positive and equal for the time cue in the positive and negative envelope slopes. Weights were also larger for modulations cycles near the waveform onset. Weights estimated for the concomitant interaural level cue were positive for the positive envelope slope and negative for the negative slope, consistent with exclusive use of time cues.We thank Virginia M. Richards and Bruce G. Berg for helpful discussions. We also thank Brian C. J. Moore and an anonymous reviewer for their insightful comments on an earlier draft of the manuscript. Work supported by grants from the National Science Council, Taiwan NSC 98-2410-H-008-081-MY3 and NIH R01DC009659

    Learning to discriminate interaural time differences at low and high frequencies

    No full text
    This study investigated learning, in normal-hearing adults, associated with training (i.e. repeated practice) on the discrimination of ongoing interaural time difference (ITD). Specifically, the study addressed an apparent disparity in the conclusions of previous studies, which reported training-induced learning at high frequencies but not at low frequencies. Twenty normal-hearing adults were trained with either low- or high-frequency stimuli, associated with comparable asymptotic thresholds, or served as untrained controls. Overall, trained listeners learnt more than controls and over multiple sessions. The magnitudes and time-courses of learning with the lowand high-frequency stimuli were similar. While this is inconsistent with the conclusion of a previous study with low-frequency ITD, this previous conclusion may not be justified by the results reported. Generalization of learning across frequency was found, although more detailed investigations of stimulus-specific learning are warranted. Overall, the results are consistent with the notion that ongoing ITD processing is functionally uniform across frequency. These results may have implications for clinical populations, such as users of bilateral cochlear implants
    corecore